Activation of inflammasomes in podocyte injury of mice on the high fat diet: Effects of ASC gene deletion and silencing.
نویسندگان
چکیده
Inflammasome, an intracellular inflammatory machinery, has been reported to be involved in a variety of chronic degenerative diseases such as atherosclerosis, autoinflammatory diseases and Alzheimer's disease. The present study hypothesized that the formation and activation of inflammasomes associated with apoptosis associated speck-like protein (ASC) are an important initiating mechanism resulting in obesity-associated podocyte injury and consequent glomerular sclerosis. To test this hypothesis, Asc gene knockout (Asc(-/-)), wild type (Asc(+/+)) and intrarenal Asc shRNA-transfected wild type (Asc shRNA) mice were fed a high fat diet (HFD) or normal diet (ND) for 12 weeks to produce obesity and associated glomerular injury. Western blot and RT-PCR analyses demonstrated that renal tissue Asc expression was lacking in Asc(-/-) mice or substantially reduced in Asc shRNA transfected mice compared to Asc(+/+) mice. Confocal microscopic and co-immunoprecipitation analysis showed that the HFD enhanced the formation of inflammasome associated with Asc in podocytes as shown by colocalization of Asc with Nod-like receptor protein 3 (Nalp3). This inflammasome complex aggregation was not observed in Asc(-/-) and local Asc shRNA-transfected mice. The caspase-1 activity, IL-1β production and glomerular damage index (GDI) were also significantly attenuated in Asc(-/-) and Asc shRNA-transfected mice fed the HFD. This decreased GDI in Asc(-/-) and Asc shRNA transfected mice on the HFD was accompanied by attenuated proteinuria, albuminuria, foot process effacement of podocytes and loss of podocyte slit diaphragm molecules. In conclusion, activation and formation of inflammasomes in podocytes are importantly implicated in the development of obesity-associated glomerular injury.
منابع مشابه
Kidney Activation of Nod-Like Receptor Protein 3 Inflammasomes Turns on Podocyte Injury and Glomerular Sclerosis in Hyperhomocysteinemia
Inflammasome is a multiprotein complex consisting of Nod-like receptor protein 3 (NALP3), apoptosisassociated speck-like protein (ASC), and caspase 1 or 5, which functions to switch on the inflammatory process. The present study hypothesized that the formation and activation of NALP3 inflammasomes turn on podocyte injury leading to glomerulosclerosis during hyperhomocysteinemia (hHcys). RT-PCR ...
متن کاملActivation of Nod-like receptor protein 3 inflammasomes turns on podocyte injury and glomerular sclerosis in hyperhomocysteinemia.
Inflammasome is a multiprotein complex consisting of Nod-like receptor protein 3 (NALP3), apoptosis-associated speck-like protein (ASC), and caspase 1 or 5, which functions to switch on the inflammatory process. The present study hypothesized that the formation and activation of NALP3 inflammasomes turn on podocyte injury leading to glomerulosclerosis during hyperhomocysteinemia (hHcys). RT-PCR...
متن کاملEffects of Endurance Training on the Expression of Cathepsin B (CTSB) and Cathepsin L (CTSL) genes in the Adipose Tissue of Mice with a High-Fat Diet
Introduction: In high-fat diet-induced obesity, the levels of cathepsin L (CTSL) and cathepsin B (CTSB) increase in adipocytes, resulting in insulin resistance in the adipose tissue. In this study, the preventive effect of endurance training on the gene expression of CTSL and CTSB was investigated in the adipose tissue of mice with a high-fat diet. Materials and Methods: Twenty-one male mice (a...
متن کاملInstigation of NLRP3 inflammasome activation and glomerular injury in mice on the high fat diet: role of acid sphingomyelinase gene
Ceramide has been reported to initiate inflammasome formation and activation in obesity and different pathological conditions. The present study was performed to explore the role of acid sphingomyelinase (Asm) in the development of high fat diet (HFD)-induced inflammasome and activation and consequent glomerular injury. Asm knockout (Asm(-/-)) and wild type (Asm(+/+)) mice with or without Asm s...
متن کاملActivation of NLRP3 inflammasomes contributes to hyperhomocysteinemia-aggravated inflammation and atherosclerosis in apoE-deficient mice
Hyperhomocysteinemia (HHcy) has been shown to promote vascular inflammation and atherosclerosis, but the underlying mechanisms remain largely unknown. The NLRP3 inflammasome has been identified as the cellular machinery responsible for activation of inflammatory processes. In this study, we hypothesized that the activation of NLRP3 inflammasomes contributes to HHcy-induced inflammation and athe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochimica et biophysica acta
دوره 1843 5 شماره
صفحات -
تاریخ انتشار 2014